Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines

Author:

Wang Kun,Zou Li,Wang AiminORCID,Zhao Peidong,Jiang Yichen

Abstract

In recent years, the H-rotor vertical-axis turbine has attracted considerable attention in the field of wind and tidal power generation. After a series of complex spatiotemporal evolutions, the vortex shed from turbine blades forms a turbulent wake with a multi-scale coherent structure. An analysis of the wake characteristics of twin turbines forms the basis of array optimisation. This study aimed to examine the instability characteristics of a twin-turbine wake with two rotational configurations. The dynamic evolution characteristics of coherent structures with different scales in the wake were analysed via wavelet analysis. The results show that an inverse energy cascade process occurs after the high-frequency small-scale coherent structures induced by rotation lose their coherence. This self-organising characteristic is more apparent in the quasi two-dimensional wake of a forward-moving counter-rotating turbine (Array 1) than in that of a backward-moving counter-rotating turbine (Array 2). With greater organisation and coherence, the wake of Array 1 exhibits low-frequency instability characteristics dominated by a large-scale coherent structure. In addition, the signals reconstructed using wavelet transform show that asymmetric modes exist between low-frequency large-scale coherent structures. The experimental results provide a new perspective on the instability mechanism of twin-turbine wakes, as well as important data for numerical modelling.

Funder

Qingdao National Laboratory for Marine Science and Technology

State Key Laboratory of Structural Analysis for Industrial Equipment

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3