Energy Consumption Optimization and User Comfort Maximization in Smart Buildings Using a Hybrid of the Firefly and Genetic Algorithms

Author:

Wahid Fazli,Fayaz Muhammad,Aljarbouh Ayman,Mir Masood,Aamir Muhammad,Imran

Abstract

This research work proposed a hybrid model to maximize energy consumption and maximize user comfort in residential buildings. The proposed model consists of two widely used optimization algorithms named the firefly algorithm (FA) and genetic algorithm (GA). The hybridization of two optimization approaches results in a better optimization process, leading to better performance of the process in terms of minimum power consumption and maximum occupant’s comfort. The inputs of the optimization model are illumination, temperature, and air quality from the user, in addition with the external environment. The outputs of the proposed model are the optimized values of illumination, temperature, and air quality, which are, in turn, used in computing the values of user comfort. After the computation of the comfort index, these values enter the fuzzy controllers, which are used to adjust the cooling/heating system, illumination system, and ventilation system according to the occupant’s requirement. A user-friendly environment for power consumption minimization and user comfort maximization using data from different sensors, user, processes, power control systems, and various actuators is proposed in this work. The results obtained from the hybrid model have been compared with many state-of-the-art optimization algorithms. The final results revealed that the proposed approach performed better as compared to the standard optimization techniques.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3