Abstract
Energy efficiency (EE) and demand response (DR) resources provide important utility systems and ratepayer benefits. At the same time, the rapid change in the amount and type of variable renewable energy, like solar and wind, is reshaping the role and economic value of EE and DR, and will likely affect the time-dependent valuation of EE and DR measures. Utilities are increasingly interested in integrating EE and DR measures as a strategic approach to improve their collective cost-effectiveness and performance. We develop a framework to identify the EE and DR attributes, system conditions, and technological factors that are likely to drive interactions between EE and DR. We apply the framework to example measures with different technology specifics in the context of different utility system conditions. We find that EE and DR interactions are likely driven by changes in discretionary load, the addition of controls or other capabilities to shift loads, and the coincidence of savings with system peak or load building periods. Our analysis suggests increasing complexity in evaluating EE and DR interactions when moving from standalone equipment to integrated systems. The framework can be applied to research on integrated building systems by grouping measures into portfolios with different likely implications for EE and DR interactions.
Funder
U.S. Department of Energy
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献