Abstract
The coal was gasified in a fluidized bed reactor with CO2 as a gasifying agent at 889–980 °C. The coal and gasification residue produced during gasification was burned at temperatures up to 900 °C. The petrographic analysis, gasification residues, and fly and bottom ash resulting from the combustion of coal and chars showed the efficiency of the gasification and combustion processes. The gasification residue primarily comprised inertoids and crassinetwork, which accounted for 60% of the sample. The analysis of the petrographic composition of fly ash revealed that the fly ash formed during the combustion of gasification residue had a higher mineral content. The fly ash from the combustion of gasification products contained significantly less unburned coal compared to that from coal. The samples of the bottom ash from coal combustion were composed of approximately 25% organic matter, most of which was chars. The bottom ash formed from the combustion of coal gasification products was composed mainly of mineral matter (95% or higher). The obtained results have significant implications in determining future waste management strategies.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献