Abstract
One potential method to estimate noninvasive cuffless blood pressure (BP) is through measurement of pulse wave velocity (PWV), which can be characterized by measuring the distance and the transit time of the pulse between two arterial sites. To obtain the pulse waveform, bioimpedance (BI) measurement is a promising approach because it continuously reflects the change in BP through the change in the arterial cross-sectional area. Several studies have investigated BI channels in a vertical direction with electrodes located along the wrist and the finger to calculate PWV and convert to BP; however, the measurement systems were relatively large in size. In order to reduce the total device size for use in a PWV-based BP smartwatch, this study proposes and examines a horizontal BI structure. The BI device is also designed to apply in a very small body area. Our proposed structure is based on two sets of four-electrode BI interface attached around the wrist. The effectiveness of our system and approach is evaluated on 15 human subjects; the PWV values are obtained with various distances between two BI channels to assess the efficacy. The results show that our BI system can monitor pulse rate efficiently in only a 0.5 × 1.75 cm2 area of the body. The correlation of pulse rate from the proposed design against the reference is 0.98 ± 0.07 (p < 0.001). Our structure yields higher detection ratios for PWV measurements of 99.0 ± 2.2%, 99.0 ± 2.1%, and 94.8 ± 3.7% at 1, 2, and 3 cm between two BI channels, respectively. The measured PWVs correlate well with the BP standard device at 0.81 ± 0.08 and 0.84 ± 0.07 with low root-mean-squared-errors at 7.47 ± 2.15 mmHg and 5.17 ± 1.81 mmHg for SBP and DBP, respectively. Our results inform future designs of smart watches capable of measuring blood pressure.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献