Pelletization of Sunflower Seed Husks: Evaluating and Optimizing Energy Consumption and Physical Properties by Response Surface Methodology (RSM)

Author:

Cui XuyangORCID,Yang Junhong,Shi Xinyu,Lei Wanning,Huang Tao,Bai Chao

Abstract

Pelletization is a significant approach for the efficient utilization of biomass energy. Sunflower seed husk is a common solid waste in the process of oil production. The novelty of this study was to determine the parameters during production of a novel pellet made from sunflower seed husk. The energy consumption (W) and physical properties (bulk density (BD) and mechanical durability (DU)) of the novel pellet were evaluated and optimized at the laboratory by using a pelletizer and response surface methodology (RSM) under a controlled moisture content (4%–14%), compression pressure (100–200 MPa), and die temperature (70–170 °C). The results show that the variables of temperature, pressure, and moisture content of raw material are positively correlated with BD and DU. Increasing the temperature and moisture content of raw materials can effectively reduce W, while increasing the pressure has an adverse effect on W. The optimum conditions of temperature (150 °C), pressure (180 MPa), and moisture content (12%) led to a BD of 1117.44 kg/m3, DU of 98.8%, and W of 25.3 kJ/kg in the lab. Overall, although the nitrogen content was slightly high, the novel manufactured pellets had excellent performance based on ISO 17225 (International Organization for Standardization of 17225, Geneva, Switzerland, 2016). Thus, sunflower seed husk could be considered as a potential feedstock for biomass pelletization.

Funder

Natural Science Foundation of Tianjin City, China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3