Biosynthesis of Metal Nanoparticles via Microbial Enzymes: A Mechanistic Approach

Author:

Ovais Muhammad,Khalil Ali,Ayaz MuhammadORCID,Ahmad Irshad,Nethi Susheel,Mukherjee Sudip

Abstract

During the last decade, metal nanoparticles (MtNPs) have gained immense popularity due to their characteristic physicochemical properties, as well as containing antimicrobial, anti-cancer, catalyzing, optical, electronic and magnetic properties. Primarily, these MtNPs have been synthesized through different physical and chemical methods. However, these conventional methods have various drawbacks, such as high energy consumption, high cost and the involvement of toxic chemical substances. Microbial flora has provided an alternative platform for the biological synthesis of MtNPs in an eco-friendly and cost effective way. In this article we have focused on various microorganisms used for the synthesis of different MtNPs. We also have elaborated on the intracellular and extracellular mechanisms of MtNP synthesis in microorganisms, and have highlighted their advantages along with their challenges. Moreover, due to several advantages over chemically synthesized nanoparticles, the microbial MtNPs, with their exclusive and dynamic characteristics, can be used in different sectors like the agriculture, medicine, cosmetics and biotechnology industries in the near future.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference167 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3