Differential Effects of Posttranslational Modifications of CXCL8/Interleukin-8 on CXCR1 and CXCR2 Internalization and Signaling Properties

Author:

Vacchini Alessandro,Mortier Anneleen,Proost PaulORCID,Locati Massimo,Metzemaekers Mieke,Borroni Elena

Abstract

CXCL8 or interleukin (IL)-8 directs neutrophil migration and activation through interaction with CXCR1 and CXCR2 that belong to the family of G protein-coupled receptors (GPCRs). Naturally occurring posttranslational modifications of the NH2-terminal region of CXCL8 affect its biological activities, but the underlying molecular mechanisms are only partially understood. Here, we studied the implications of site-specific citrullination and truncation for the signaling potency of CXCL8. Native CXCL8(1-77), citrullinated [Cit5]CXCL8(1-77) and the major natural isoform CXCL8(6-77) were chemically synthesized and tested in internalization assays using human neutrophils. Citrullinated and truncated isoforms showed a moderately enhanced capacity to induce internalization of CXCR1 and CXCR2. Moreover, CXCL8-mediated activation of Gαi-dependent signaling through CXCR1 and CXCR2 was increased upon modification to [Cit5]CXCL8(1-77) or CXCL8(6-77). All CXCL8 variants promoted recruitment of β-arrestins 1 and 2 to CXCR1 and CXCR2. Compared to CXCL8(1-77), CXCL8(6-77) showed an enhanced potency to recruit β-arrestin 2 to both receptors, while for [Cit5]CXCL8(1-77) only the capacity to induce β-arrestin 2 recruitment to CXCR2 was increased. Both modifications had no biasing effect, i.e., did not alter the preference of CXCL8 to activate either Gαi-protein or β-arrestin-dependent signaling through its receptors. Our results support the concept that specific chemokine activities are fine-tuned by posttranslational modifications.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3