Recent Advances and Applications of Rapid Microbial Assessment from a Food Safety Perspective

Author:

Pampoukis GeorgeORCID,Lytou Anastasia E.,Argyri Anthoula A.ORCID,Panagou Efstathios Z.ORCID,Nychas George-John E.ORCID

Abstract

Unsafe food is estimated to cause 600 million cases of foodborne disease, annually. Thus, the development of methods that could assist in the prevention of foodborne diseases is of high interest. This review summarizes the recent progress toward rapid microbial assessment through (i) spectroscopic techniques, (ii) spectral imaging techniques, (iii) biosensors and (iv) sensors designed to mimic human senses. These methods often produce complex and high-dimensional data that cannot be analyzed with conventional statistical methods. Multivariate statistics and machine learning approaches seemed to be valuable for these methods so as to “translate” measurements to microbial estimations. However, a great proportion of the models reported in the literature misuse these approaches, which may lead to models with low predictive power under generic conditions. Overall, all the methods showed great potential for rapid microbial assessment. Biosensors are closer to wide-scale implementation followed by spectroscopic techniques and then by spectral imaging techniques and sensors designed to mimic human senses.

Funder

HORIZON 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3