Deep Feature Fusion and Optimization-Based Approach for Stomach Disease Classification

Author:

Mohammad FarahORCID,Al-Razgan MunaORCID

Abstract

Cancer is the deadliest disease among all the diseases and the main cause of human mortality. Several types of cancer sicken the human body and affect organs. Among all the types of cancer, stomach cancer is the most dangerous disease that spreads rapidly and needs to be diagnosed at an early stage. The early diagnosis of stomach cancer is essential to reduce the mortality rate. The manual diagnosis process is time-consuming, requires many tests, and the availability of an expert doctor. Therefore, automated techniques are required to diagnose stomach infections from endoscopic images. Many computerized techniques have been introduced in the literature but due to a few challenges (i.e., high similarity among the healthy and infected regions, irrelevant features extraction, and so on), there is much room to improve the accuracy and reduce the computational time. In this paper, a deep-learning-based stomach disease classification method employing deep feature extraction, fusion, and optimization using WCE images is proposed. The proposed method comprises several phases: data augmentation performed to increase the dataset images, deep transfer learning adopted for deep features extraction, feature fusion performed on deep extracted features, fused feature matrix optimized with a modified dragonfly optimization method, and final classification of the stomach disease was performed. The features extraction phase employed two pre-trained deep CNN models (Inception v3 and DenseNet-201) performing activation on feature derivation layers. Later, the parallel concatenation was performed on deep-derived features and optimized using the meta-heuristic method named the dragonfly algorithm. The optimized feature matrix was classified by employing machine-learning algorithms and achieved an accuracy of 99.8% on the combined stomach disease dataset. A comparison has been conducted with state-of-the-art techniques and shows improved accuracy.

Funder

King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3