Fridamycin A, a Microbial Natural Product, Stimulates Glucose Uptake without Inducing Adipogenesis

Author:

Yoon Sun-Young,Lee Seoung Rak,Hwang Ji Young,Benndorf René,Beemelmanns Christine,Chung Sang J.,Kim Ki HyunORCID

Abstract

Type 2 diabetes is a complex, heterogeneous, and polygenic disease. Currently, available drugs for treating type 2 diabetes predominantly include sulfonylureas, α-glucosidase inhibitors, and biguanides. However, long-term treatment with these therapeutic drugs is often accompanied by undesirable side effects, which have driven interest in the development of more effective and safer antidiabetic agents. To address the urgent need for new chemical solutions, we focused on the analysis of structurally novel and/or biologically new metabolites produced by insect-associated microbes as they have recently been recognized as a rich source of natural products. Comparative LC/MS-based analysis of Actinomadura sp. RB99, isolated from a fungus-growing termite, led to the identification of the type II polyketide synthase-derived fridamycin A. The structure of fridamycin A was confirmed by 1H NMR data and LC/MS analysis. The natural microbial product, fridamycin A, was examined for its antidiabetic properties in 3T3-L1 adipocytes, which demonstrated that fridamycin A induced glucose uptake in 3T3-L1 cells by activating the AMP-activated protein kinase (AMPK) signaling pathway but did not affect adipocyte differentiation, suggesting that the glucose uptake took place through activation of the AMPK signaling pathway without inducing adipogenesis. Our results suggest that fridamycin A has potential to induce fewer side effects such as weight gain compared to rosiglitazone, a commonly used antidiabetic drug, and that fridamycin A could be a novel potential therapeutic candidate for the management of type 2 diabetes.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3