A Novel Hybrid Approach for Numerical Modeling of the Nucleating Flow in Laval Nozzle and Transonic Steam Turbine Blades

Author:

,Mahpeykar Mohammad

Abstract

In the present research, considering the importance of desirable steam turbine design, improvement of numerical modeling of steam two-phase flows in convergent and divergent channels and the blades of transonic steam turbines has been targeted. The first novelty of this research is the innovative use of combined Convective Upstream Pressure Splitting (CUSP) and scalar methods to update the flow properties at each calculation point. In other words, each property (density, temperature, pressure and velocity) at each calculation point can be computed from either the CUSP or scalar method, depending on the least deviation criterion. For this reason this innovative method is named “hybrid method”. The next novelty of this research is the use of an inverse method alongside the proposed hybrid method to find the amount of the important parameter z in the CUSP method, which is herein referred to as “CUSP’s convergence parameter”. Using a relatively simple computational grid, firstly, five cases with similar conditions to those of the main cases under study in this research with available experimental data were used to obtain the value of z by the Levenberg-Marquardt inverse method. With this innovation, first, an optimum value of z = 2.667 was obtained using the inverse method and then directly used for the main cases considered in the research. Given that the aim is to investigate the two-dimensional, steady state, inviscid and adiabatic modeling of steam nucleating flows in three different nozzle and turbine blade geometries, flow simulation was performed using a relatively simple mesh and the innovative proposed hybrid method (scalar + CUSP, with the desired value of z = 2.667 ). A comparison between the results of the hybrid modeling of the three main cases with experimental data showed a very good agreement, even within shock zones, including the condensation shock region, revealing the efficiency of this numerical modeling method innovation. The main factor in improving the aforementioned results was found to be a reduction of the numerical errors by up to 70% in comparison to conventional methods (scalar, Jameson original), so that the mass flow rate is well conserved, thereby proving better satisfaction of the conservation laws. It should be noted that by using this innovative hybrid method, one can take advantages of both central difference scheme and upstream scheme (scalar and CUSP, respectively) at the same time in simulating complex flows in any other finite volume scheme.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3