A Fuzzy-Innovation-Based Adaptive Kalman Filter for Enhanced Vehicle Positioning in Dense Urban Environments

Author:

Woo Rinara,Yang Eun-Ju,Seo Dae-Wha

Abstract

In this paper, a fuzzy-innovation based adaptive extended Kalman filter (FI-AKF)is proposed to improve the performance of the GNSS/INS fusion system, which is degradeddue to satellite signal cutoff and attenuation and inaccurate modeling in dense urbanenvironments. The information used for sensor fusion is obtained from real-time kinematic (RTK),micro-electro-mechanical system based inertial measumrement unit (MEMS-IMU), and on-boarddiagnostics (OBD). The fuzzy logic system is proposed to adaptively update the measurementcovariance matrix of the RTK according to the position dilution of precision (PDOP), the numberof receivable satellites, and the innovation of the extended Kalman filter (EKF). In addition, thedriving state of the vehicle is defined as stop, straight run, left/right turn, and the like. To reduce theheading estimation error of the Kalman filter, the estimated heading is corrected according to thedriving state. Also, the measurement covariance matrices of IMU and OBD are applied adaptivelyconsidering the characteristics of each sensor according to the driving state. In order to analyze theperformance of the proposed FI-AKF positioning system in a dense urban environment, a computersimulation is performed. The proposed FI-AKF is compared to the performance of the existingextended Kalman filter and the innovation-based adaptive extended Kalman filter. In addition, weconduct a performance comparison experiment with a commercial positioning system in the field test.Through each experiment, it is confirmed that the proposed FI-AKF system has higher positioningperformance than the comparison positioning systems in a dense urban environment.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3