Simultaneous Scheduling and Synthesis of Industrial Water Allocation Networks

Author:

Chauhan Sudha,Shaik Munawar A.ORCID

Abstract

This work addresses integration of batch scheduling with water allocation, recycle and reuse opportunities for freshwater minimization in batch plants via sequential and simultaneous methodologies. The presented scheduling model is based on state task network representation and unit-specific event based continuous time formulation. In the production scheduling model, a three-index finish time variable has been considered for handling multiple states having different processing time durations for the same task in a processing unit. The scheduling model introduces constraints to handle storage violations for production and consumption of the same state in the same unit. In the water network model for freshwater minimization, a regeneration unit along with a central water storage tank has been included to exploit the possibility of water reuse in the washing units. Four case studies are solved with single and multiple contaminants to evaluate the performance of the proposed model, which gives better savings in terms of freshwater consumption and thus also minimizes the effluent generation. Additionally, a preliminary analysis for two-objective optimization is presented where revenue is maximized, and the total water cost is minimized simultaneously using the weighted-sum method.

Funder

Council of Scientific & Industrial Research (CSIR), India

UAE University Research Start-up

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3