Affiliation:
1. University of Stuttgart, Faculty 2: Civil and Environmental Engineering, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), Bandtäle 2, 70569 Stuttgart, Germany
Abstract
In line with the strategy of transforming existing municipal wastewater treatment plants (WWTP) from disposal facilities into systems for using domestic wastewater (WW) as a source of energy and raw materials, a concept consisting of chemical, physical, and biological steps has been set up as a pilot project in WWTP Büsnau, Stuttgart, Germany. The key part of the entire process is based on the use of advanced microsieving (MS) to eliminate remaining particulate organic carbon (POC) (mg/L) from the effluent of the primary sedimentation tank (PST). Therefore, in the primary stages of this project, it was necessary to have a broad vision and a true understanding of the particle size distribution (PSD) of municipal WW. As a novel approach, in the present study, the conventional PSD method was optimized by implementing certain modifications, and the tests were conducted in situ. The modified PSD analyses facilitated in-depth investigations of solid–liquid separation at WWTPs and showed that drying samples in the oven can result in a 20% to 30% deviation in the POC (mg/L) removal results. In addition, the idea of the substitution of PSTs with an MS was supported by the results of this study. It was determined that an MS with a pore size of 45 µm to 63 µm can provide the same elimination efficiency as a PST. Another significant outcome of this study was the introduction of suitable mesh sizes for the MS which were coupled with PST in order to extract the maximum amount of POC (mg/L) from the municipal WWTPs without the addition of any chemicals. The results revealed that up to 90% of the TSS (mg/L) and 70% of the COD (mg/L) can be removed if an MS with a mesh size between 4 µm and 20 µm is coupled with a PST.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献