Audio–Visual Fusion Based on Interactive Attention for Person Verification

Author:

Jing Xuebin12,He Liang123,Song Zhida12,Wang Shaolei12

Affiliation:

1. School of Computer Science and Technology, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Signal Detection and Processing, Urumqi 830017, China

3. Department of Electronic Engineering, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China

Abstract

With the rapid development of multimedia technology, personnel verification systems have become increasingly important in the security field and identity verification. However, unimodal verification systems have performance bottlenecks in complex scenarios, thus triggering the need for multimodal feature fusion methods. The main problem with audio–visual multimodal feature fusion is how to effectively integrate information from different modalities to improve the accuracy and robustness of the system for individual identity. In this paper, we focus on how to improve multimodal person verification systems and how to combine audio and visual features. In this study, we use pretrained models to extract the embeddings from each modality and then perform fusion model experiments based on these embeddings. The baseline approach in this paper involves taking the fusion feature and passing it through a fully connected (FC) layer. Building upon this baseline, we propose three fusion models based on attentional mechanisms: attention, gated, and inter–attention. These fusion models are trained on the VoxCeleb1 development set and tested on the evaluation sets of the VoxCeleb1, NIST SRE19, and CNC-AV datasets. On the VoxCeleb1 dataset, the best system performance achieved in this study was an equal error rate (EER) of 0.23% and a detection cost function (minDCF) of 0.011. On the evaluation set of NIST SRE19, the EER was 2.60% and the minDCF was 0.283. On the evaluation set of the CNC-AV set, the EER was 11.30% and the minDCF was 0.443. These experimental results strongly demonstrate that the proposed fusion method can significantly improve the performance of multimodal character verification systems.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3