Modelling of an Anaerobic Digester: Identification of the Main Parameters Influencing the Production of Methane Using the Sobol Method

Author:

Martinez Andres,Vernieres-Hassimi Lamiae,Abdelouahed LokmaneORCID,Taouk BecharaORCID,Mohabeer ChetnaORCID,Estel LionelORCID

Abstract

Anaerobic digestion is a promising method of organic waste valorisation, particularly for fish farm waste, which has experienced a high growth rate in recent years. The literature contains predictive mathematical models that have been developed by various authors, allowing the prediction of the composition of bio-gas production from organic waste. In general, Monod’s kinetic expression is the basis for describing the enzymatic reaction rates for anaerobic digestion. In this work, several parameters are taken into account, such as temperature, cell growth inhibition, and other operating parameters, and systems of differential equations coupling the kinetics and stoichiometry for bio-reactions are applied to better describe the dynamics. Because of the high number of initial parameters that need to be defined for the anaerobic digester, the use of this model requires significant resources and a long calculation time. For this reason, a global sensitivity analysis (GSA) is applied to this predictive model based on the Sobol index method, in order to identify the most influential key parameters and the interactions between them. For the digestion of fish waste, it is observed that the key parameters influencing methane production are the lipid concentration of the waste, temperature, and hydraulic retention time (HRT).

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3