Abstract
The characteristics of retrograde filling material are important factors that can affect the long-term success of apical microsurgery. Various calcium silicate-based cements (CSC) were introduced to overcome drawbacks of mineral trioxide aggregate (MTA), while Emdogain is known to be effective in the regeneration of periodontal tissues. The aim of this study is to evaluate the biocompatibility and osteogenic potential of various CSCs combined with Emdogain on human bone marrow-derived mesenchymal stem cells. Experimental groups were classified into eight groups depending on the material and the presence of Emdogain. In the cell-counting kit test, all experimental groups combined with Emdogain showed higher cell viability compared with those without Emdogain at days 1 and 2. In the wound-healing assay, cell migration increased significantly over time, with or without Emdogain. In the alkaline phosphatase assay, all groups treated with Emdogain showed higher activity compared with those without Emdogain at day 3 (p < 0.05). Using alizarin red S staining, all groups treated with Emdogain showed greater calcium nodule formation compared with those without Emdogain at days 7 and 14 (p < 0.05). In conclusion, using CSCs as retrograde filling materials and the application of additional Emdogain will increase bone regeneration and improve the prognosis of apical microsurgery.
Funder
National Research Foundation of Korea
Subject
General Materials Science