Microstructure Evolution and Mechanical Properties of As-Cast and As-Compressed ZM6 Magnesium Alloys during the Two-Stage Aging Treatment Process

Author:

Fu JiaORCID,Chen Su

Abstract

In the present study, different solid solution and aging processes of as-cast and as-compressed ZM6 (Mg2.6Nd0.4Zn0.4Zr) alloy were designed, and the microstructure and precipitation strengthening mechanisms were discussed. After the pre-aging treatment, a large amount of G.P. zones formed in the α-Mg matrix over the course of the subsequent secondary G.P. prescription, where the fine and dispersed Mg12(Nd,Zn) phases were precipitated at the grain boundaries. The pre-aging and secondary aging processes resulted in the Mg12(Nd,Zn) phase becoming globular, preventing grain boundary sliding and decreasing grain boundary diffusion. Meanwhile, precipitation phase â″(Mg3Nd) demonstrated a coherent relationship with the α-Mg matrix after the pre-aging process, and after the secondary aging phase, Mg12Nd increases and became semi-coherent in the matrix. Compared to an as-cast ZM6 alloy, the yield strength of the as-compressed ZM6 alloy increased sharply due to an increase in the yield strength that was proportional to the particle spacing, where the dislocation bypassed the second phase particle. Compared to the single-stage aging process, the two-stage aging process greatly improved the mechanical properties of both the as-cast and as-compressed ZM6 alloys. The difference between the as-cast and as-compressed states is that an as-compressed ZM6 alloy with more dislocations and twins has more dispersed precipitates in the G.P. zones after secondary aging, meaning that it is greatly strengthened after the two-stage aging treatment process.

Funder

Natural Science Foundation of Shaanxi Province

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Graduate Innovation Program of Xi'an Shiyou University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3