A Chemical-Transport-Mechanics Numerical Model for Concrete under Sulfate Attack

Author:

Chen XuandongORCID,Gu XinORCID,Xia Xiaozhou,Li Xing,Zhang Qing

Abstract

Sulfate attack is one of the crucial causes for the structural performance degradation of reinforced concrete infrastructures. Herein, a comprehensive multiphase mesoscopic numerical model is proposed to systematically study the chemical reaction-diffusion-mechanical mechanism of concrete under sulfate attack. Unlike existing models, the leaching of solid-phase calcium and the dissolution of solid-phase aluminate are modeled simultaneously in the developed model by introducing dissolution equilibrium equations. Additionally, a calibrated time-dependent model of sulfate concentration is suggested as the boundary condition. The reliability of the proposed model is verified by the third-party experiments from multiple perspectives. Further investigations reveal that the sulfate attack ability is underestimated if the solid-phase calcium leaching is ignored, and the concrete expansion rate is overestimated if the dissolution of solid-phase aluminate is not modeled in the simulation. More importantly, the sulfate attack ability and the concrete expansion rate is overestimated if the time-dependent boundary of sulfate concentration is not taken into consideration. Besides, the sulfate ion diffusion trajectories validate the promoting effect of interface transition zone on the sulfate ion diffusion. The research of this paper provides a theoretical support for the durability design of concrete under sulfate attack.

Funder

the Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3