Structure of Alloys for (Sm,Zr)(Co,Cu,Fe)z Permanent Magnets: III. Matrix and Phases of the High-Coercivity State

Author:

Dormidontov Andrey G.,Kolchugina Natalia B.,Dormidontov Nikolay A.,Zheleznyi Mark V.,Bakulina Anna S.,Prokofev Pavel A.,Andreenko Aleksandr S.,Milov Yury V.,Sysoev Nikolay N.

Abstract

Observations of the surface domain structure (Kerr-effect), optical metallography, scanning electron microscopy (SEM-SE), and electron microprobe analysis (EPMA-SEM), measurements of major and minor magnetic hysteretic loops were used to study pseudo-single-crystal samples of (Sm,Zr)(Co,Cu,Fe)z alloys subjected to heat treatments to the high-coercivity state, which are used in fabricating sintered permanent magnets. Correlations between the chemical composition, hysteretic properties, structural components, domain structure, and phase state were determined for the concentration ranges that ensure wide variations of 4f-/4d-/3d-element ratio in the studied samples. The phase state formed by collinear and coherent phase components determines the high coercive force and ultimate magnetic hysteresis loops of the pseudo-single crystals. It was found that the 1:5 phase with the hexagonal structure (P6/mmm) is the matrix of the alloys for (Sm,Zr)(Co,Cu,Fe)z permanent magnets; the matrix undergoes phase transformations in the course of all heat treatments for the high-coercivity state. The heterogeneity observed with optical magnifications, namely, the observation of main structural components A and B, is due to the alternation, within the common matrix, of regions with modulated quasi-spherical precipitates and regions with hexagonal bipyramids (cellular phase) although, traditionally, many investigators consider the cellular phase as the matrix. It is shown that the relationship of volume fractions of structural components A and B that account for more than 0.9 volume fraction of the total, which is due to the integral chemical composition of the alloys, determines the main hysteretic performances of the samples. The Zr-rich phases, such as 5:19, 2:7, and 6:23, and a structural component with the variable stoichiometry (Sm(Co,Cu,Fe)3.5–5) that is almost free of Zr and contains up to 33 at% Cu, were found only within structural component A in quantities sufficient for EPMA analysis.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3