Abstract
In this study, we experimentally analyzed the deformation shape of stacked layers developed using three-dimensional (3D) printing technology. The nozzle traveling speed was changed to 80, 90, 100, and 110 mm/s when printing the layers to analyze its effect on layer deformation. Furthermore, the cross-sectional area and the number of layers were analyzed by printing five layers with overall dimensions of 1000 (w) × 2200 (l) × 50 (h) mm (each layer was 10 mm high) using Vernier calipers. Moreover, we analyzed the interface and cross-sectional area of layers that are difficult to confirm visually using X-ray computed tomography (X-ray CT) analysis. As a result of measuring the deformation at the center of the layer, it was confirmed that the deformation was greater for lower nozzle traveling speeds. Consequently, the X-ray CT analysis verified that the layer had the same cross-sectional area irrespective of the layer printing order at the same nozzle travel speed, even if the layer was deformed.
Funder
Ministry of Oceans and Fisheries
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献