Investigations of Model Multilayer Ceramic Casting Molds in a Raw State by Nondestructive Methods

Author:

Żaba KrzysztofORCID,Puchlerska Sandra,Książek MarzannaORCID,Sitek Ryszard,Wiśniewski PawełORCID,Mizera Jarosław

Abstract

This article presents the results of research on the use of modern nondestructive methods such as 3D scanning, thermography and computed tomography (CT) to assess the quality of multilayer ceramic molds. Tests were performed on spherical samples of multilayer ceramic molds in the raw state. Samples were made of molding sands composed of quartz and molochite powders, the alcoholic binder hydrolyzed ethyl silicate (ZKE) and an aqueous binder based on colloidal silica. Thickness measurements of spherical forms were made using a 3D scanner. Porosity measurements were made using CT. Additionally, thermography observations of the mold cooling process were made with controlled temperature and humidity. The results of temperature measurements of samples were compared with measurements of thickness and porosity. The practical goal was to determine the possibility of using thermography, 3D scanning and CT as a quick method for detecting mold defects by varying their thickness, porosity and cracks and for final verification of the ceramic molds’ condition before casting.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

General Materials Science

Reference46 articles.

1. New generation of pattern materials for investment casting;Karwiński;Arch. Foundry Eng.,2011

2. Investigation Of Optimize Wax Pattern In The Investment Casting By Using The Different Form Of Waxes

3. Analysis the Properties of Lost Wax Process and Its Use ability Exploring Possibilities;Sharma;Int. J. Eng. Sci. Invent.,2013

4. Expanded Polystyrene (EPS) Pattern Application in Investment Casting and Chemical Removing;Guler;Ceram. Mater.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3