A Critical Look at the Need for Performing Multi-Hazard Probabilistic Risk Assessment for Nuclear Power Plants

Author:

Aras Egemen M.,Diaconeasa Mihai A.ORCID

Abstract

Probabilistic Risk Assessment (PRA) is one of the technologies that is used to inform the design, licensing, operation, and maintenance activities of nuclear power plants (NPPs). A PRA can be performed by considering the single hazard (e.g., earthquake, flood, high wind, landslide) or by considering multi-hazards (e.g., earthquake and tsunami, high wind and internal fire). Single hazard PRA was thought sufficient to cover the analysis of a severe accident until the Fukushima Daiichi NPP accident in 2011. Since then, efforts were made to consider multi-hazards as well; thus, multi-hazard PRAs are starting to be seen as being indispensable for NPPs. In addition to the changing frequency of global and local natural hazards, other reasons to be highlighted are that the number and diversity of NPPs will probably increase. Moreover, advanced reactors are close to becoming a reality by designing them with passive safety systems, smaller, standardized, and even transportable to make them cheaper across the design, licensing construction, and operation stages. Thus, multi-hazards should be addressed in any future full-scope PRA. Although we found a few studies discussing multi-hazards, a general framework for multi-hazard PRA is still missing. In this paper, we argue that the starting point for any multi-hazard PRA general framework should be the Advanced Non-LWR Licensing Basis Event Selection (LBE) Approach and Probabilistic Risk Assessment Standard for Non-Light Water Reactor (non-LWR) Nuclear Power Plants. For Probabilistic Risk Assessment (PRA), history has shown us the path forward before, with Three Mile Accident being seen as one milestone to understand the necessity of PRA. The Fukushima Daiichi NPP Accident is another milestone in the development of PRA, showing the need for performing multi-hazard PRA for the current and future NPPs.

Publisher

MDPI AG

Reference55 articles.

1. Nonpower applications of nuclear technology

2. Nuclear non‐proliferation review and improving proliferation resistance assessment in the future

3. Light water reactor (LWR) safety;Sehgal;Nucl. Eng. Technol.,2006

4. Security Aspects of Nuclear Facilities|IAEAhttps://www.iaea.org/topics/security-aspects

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3