ReMouse Dataset: On the Efficacy of Measuring the Similarity of Human-Generated Trajectories for the Detection of Session-Replay Bots

Author:

Sadeghpour Shadi1ORCID,Vlajic Natalija1

Affiliation:

1. Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J 1P3, Canada

Abstract

Session-replay bots are believed to be the latest and most sophisticated generation of web bots, and they are also very difficult to defend against. Combating session-replay bots is particularly challenging in online domains that are repeatedly visited by the same genuine human user(s) in the same or similar ways—such as news, banking or gaming sites. In such domains, it is difficult to determine whether two look-alike sessions are produced by the same human user or if these sessions are just bot-generated session replays. Unfortunately, to date, only a handful of research studies have looked at the problem of session-replay bots, with many related questions still waiting to be addressed. The main contributions of this paper are two-fold: (1) We introduce and provide to the public a novel real-world mouse dynamics dataset named ReMouse. The ReMouse dataset is collected in a guided environment, and, unlike other publicly available mouse dynamics datasets, it contains repeat sessions generated by the same human user(s). As such, the ReMouse dataset is the first of its kind and is of particular relevance for studies on the development of effective defenses against session-replay bots. (2) Our own analysis of ReMouse dataset using statistical and advanced ML-based methods (including deep and unsupervised neural learning) shows that two different human users cannot generate the same or similar-looking sessions when performing the same or a similar online task; furthermore, even the (repeat) sessions generated by the same human user are sufficiently distinguishable from one another.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RanABD: MTD-Based Technique for Detection of Advanced Session-Replay Web Bots;Proceedings of the 10th ACM Workshop on Moving Target Defense;2023-11-26

2. RanABD: Web Page Randomization for Advanced Web-Bot Detection;2023 7th Cyber Security in Networking Conference (CSNet);2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3