Sparse Data Recommendation by Fusing Continuous Imputation Denoising Autoencoder and Neural Matrix Factorization

Author:

Wan Xinyue,Zhang Bofeng,Zou Guobing,Chang Furong

Abstract

In recent years, although deep neural networks have yielded immense success in solving various recognition and classification problems, the exploration of deep neural networks in recommender systems has received relatively less attention. Meanwhile, the inherent sparsity of data is still a challenging problem for deep neural networks. In this paper, firstly, we propose a new CIDAE (Continuous Imputation Denoising Autoencoder) model based on the Denoising Autoencoder to alleviate the problem of data sparsity. CIDAE performs regular continuous imputation on the missing parts of the original data and trains the imputed data as the desired output. Then, we optimize the existing advanced NeuMF (Neural Matrix Factorization) model, which combines matrix factorization and a multi-layer perceptron. By optimizing the training process of NeuMF, we improve the accuracy and robustness of NeuMF. Finally, this paper fuses CIDAE and optimized NeuMF with reference to the idea of ensemble learning. We name the fused model the I-NMF (Imputation-Neural Matrix Factorization) model. I-NMF can not only alleviate the problem of data sparsity, but also fully exploit the ability of deep neural networks to learn potential features. Our experimental results prove that I-NMF performs better than the state-of-the-art methods for the public MovieLens datasets.

Funder

National Natural Science Foundation of China

Shanghai Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3