Simulation Model and Method for Active Torsional Vibration Control of an HEV

Author:

Zhong Biqing,Deng Bin,Zhao Han

Abstract

Hybrid electric vehicles (HEV) might cause new noise vibration and harshness (NVH) problems, due to their complex powertrain systems. Therefore, in this paper, a new longitudinal dynamic simulation model of a series-parallel hybrid electric bus with an active torsional vibration control module is proposed. First, the schematic diagrams of the simulation model architecture and the active control strategy are given, and the dynamic models of the main components are introduced. Second, taking advantage of the characteristics of hybrid systems, a method of determining the key dynamic parameters by a bench test is proposed. Finally, in a typical bus-driving cycle for Chinese urban conditions, time domain and frequency domain processing methods are used to analyze vehicle body jerk, fluctuation of rotational speed, and torsional angle of the key components. The results show that the active control method can greatly improve the system’s torsional vibration performance when switching modes and at resonance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Experimental Investigation of an Active Angular Vibration Absorber;International Journal of Structural Stability and Dynamics;2023-10-31

2. Torsional Vibration Attenuation of HEV Drivetrain Featuring on a Controllable Damper;SAE Technical Paper Series;2023-10-30

3. Method for Defining Parameters of Electromechanical System Model as Part of Digital Twin of Rolling Mill;Journal of Manufacturing and Materials Processing;2023-10-12

4. Study on torsional vibration characteristics and suppression of electric vehicles with dual-motor drive system;Journal of the Franklin Institute;2023-01

5. An active multiobjective real-time vibration control algorithm for parallel hybrid electric vehicle;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3