Abstract
The rapid growth in social networking services has led to the generation of a massivevolume of opinionated information in the form of electronic text. As a result, the research on textsentiment analysis has drawn a great deal of interest. In this paper a novel feature weighting approachis proposed for the sentiment analysis of Twitter data. It properly measures the relative significanceof each feature regarding both intra-category and intra-category distribution. A new statistical modelcalled Category Discriminative Strength is introduced to characterize the discriminability of thefeatures among various categories, and a modified Chi-square (2)-based measure is employed tomeasure the intra-category dependency of the features. Moreover, a fine-grained feature clusteringstrategy is proposed to maximize the accuracy of the analysis. Extensive experiments demonstrate thatthe proposed approach significantly outperforms four state-of-the-art sentiment analysis techniquesin terms of accuracy, precision, recall, and F1 measure with various sizes and patterns of training andtest datasets.
Funder
Ministry of Education, Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献