Personal Climatization Systems—A Review on Existing and Upcoming Concepts

Author:

Warthmann Alexander,Wölki Daniel,Metzmacher Henning,van Treeck Christoph

Abstract

To accomplish the current climate goals of the federal republic of Germany, energy efficiency within the building and automotive sector must improve considerably. One possible way to reduce the high amount of energy required for heating, ventilation, and air-conditioning (HVAC) is the introduction of personal climatization systems in combination with the extension of the standardized room air temperature range. Personal systems allow improvements of climatic conditions (heating, cooling, and air quality) within sub-areas of the room instead of conditioning an entire room air volume. In this regard, personal systems are perfectly suitable for locations with local air-conditioning focal points, such as open-plan offices and vehicle cabins, where they substantially improve the energy efficiency of the entire system. This work aims to summarize previously conducted research in the area of personal climatization systems. The investigated local thermal actuators comprise fans for the generation of air movement, ventilators for the improvement of the air quality within the respiratory area of persons, water-conditioned panels for the climatization of persons via longwave radiation and conduction, radiant heaters, and combinations of the systems. Personal systems are superior to mixing ventilation regarding the improvement of the perceived air quality and thermal comfort. Furthermore, the introduced overview shows that personal climatization systems are generally more energy-efficient than conventional air-conditioning and facilitates the extension of the indoor air temperature corridor of the HVAC. Table fans and climatized seats are highly effective in connection with the improvement of personal thermal comfort. The performance of the overwhelming majority of applied personal environmental control systems is user-controlled or depends on a predefined load profile, which is generally defined person independent. Single studies reveal that effectively controlled automated systems have a similar thermal impact on a user’s thermal comfort as user-controlled ones. The implementation of an automated control system is feasible by using novel approaches such as the so-called human-centered closed loop control-platform (HCCLC-platform). The latter contains a central data server which allows asynchronous, bi-directional communication between multi-modal sensor data, user feedback systems, thermal actuators and numerical calculation models used to assess the individual thermal comfort of a person. This enables a continuous and holistic reflection of the thermal situation inside a room and the estimation of the corresponding impact on an individual’s thermal comfort. Considering the measured and simulated thermal state of a single person, the described system is capable of determining body-part-specific energy requirements that are needed to keep the overall thermal comfort level of an individual person on a high level.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference178 articles.

1. Energieverbrauch des Sektors Gewerbe, Handel, Dienstleistungen (GHD) in Deutschland für die Jahre 2011 bis 2013 Schlussbericht an das Bundesministerium für Wirtschaft und Energie (BMWi);Schlomann,2015

2. Estimates of Improved Productivity and Health from Better Indoor Environments

3. The effects of moderate heat stress on mental performance.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3