Abstract
As the application of industrial robots is limited by low stiffness that causes low precision, a joint stiffness identification algorithm for serial robots is presented. In addition, a deformation compensation algorithm is proposed for the accuracy improvement. Both of these algorithms are formulated by dual quaternion algebra, which offers a compact, efficient, and singularity-free way in robot analysis. The joint stiffness identification algorithm is derived from stiffness modeling, which is the combination of the principle of virtual work and dual quaternion algebra. To validate the effectiveness of the proposed identification algorithm and deformation compensation algorithm, an experiment was conducted on a dual arm industrial robot SDA5F. The robot performed a drilling operation during the experiment, and the forces and torques that acted on the end-effector (EE) of both arms were measured in order to apply the deformation compensation algorithm. The results of the experiment show that the proposed identification algorithm is able to identify the joint stiffness parameters of serial industrial robots, and the deformation compensation algorithm can improve the accuracy of the position and orientation of the EE. Furthermore, the performance of the forces and torques that acted on the EE during the operation were improved as well.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献