An Investigation of the Anisotropic Fatigue Properties of Laser Additively Manufactured Ti-6Al-4V under Vibration Loading

Author:

He Yan1,Huang Wei1ORCID,Guo Weiguo1,Li Yanping1,Zhao Sihan1,Lin Dong1

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Laser additively manufactured (LAM) Ti-6Al-4V alloy has huge application potential in aerospace structural parts such as turbine blades. However, there are few studies on the fatigue properties of such LAM parts under vibration loading, particularly with regard to anisotropy. In this paper, vibration fatigue properties of LAM Ti-6Al-4V by laser melted deposition were investigated along the transversely deposited (TD) and parallelly deposited (PD) directions. Through the first-order bending vibration experiments, the LAM Ti-6Al-4V alloy exhibits obvious anisotropic fatigue properties and significant dispersion in fracture position. The fracture morphology analysis reveals that the vibration fatigue failure was mainly dominated by process-induced defects and microstructure. The fatigue strength at 106 cycles of the samples with defect-free failure features (DFF) at initiation sites is 470.9 MPa in PD and 434.2 Mpa in TD, while that of the samples with defect-related failure features (DRF) at initiation sites is 364.2 Mpa in PD and 381.0 Mpa in TD. For the DFF group, the fatigue behavior is controlled by the prior β columnar grains with preferential orientation, which leads to enhanced fatigue crack propagation resistance for the PD samples. For the DRF group, which has lower fatigue lives, the fatigue anisotropy strongly depends on the projection area of the lack-of-fusion defects relative to the loading direction, resulting in better fatigue performance for the TD samples.

Funder

National Natural Science Foundation of China

111 Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3