Experimental and Numerical Study on Mechanical Behavior of Steel/GFRP/CFRP Hybrid Structure under Bending Loading with Adhesive Bond Strength Assessment

Author:

Marszałek Jerzy1,Stadnicki Jacek1ORCID

Affiliation:

1. Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland

Abstract

Adhesive bonding between steel and carbon-fiber-reinforced polymer (CFRP) composite leads to hybrid structures that combine the high strength and ductility of steel with the excellent specific strength and stiffness of CFRP composite. There is, however, a concern regarding possible galvanic corrosion when steel and carbon fibers are bonded together. One way to overcome this problem is placing glass fiber-reinforced polymer (GFRP) composite between the steel and CFRP composite, creating a more complex steel/GFRP/CFRP hybrid structure. Therefore, experimental and numerical studies on the mechanical behavior of the adhesive bonds between the steel sheet and the GFRP/CFRP hybrid composite were carried out. Among the different failure patterns, mode II was chosen for analysis because metal–polymer composite structures are usually subjected to bending, and debonding may occur due to in-plane shear stress. The tested steel/GFRP/CFRP hybrid structure was made of a hot-formed 22MnB5 boron steel sheet, intermediate single-ply bidirectional GFRP composite, and three-ply unidirectional CFRP composite. Additional mechanical tests were also carried out to determine various engineering constants of the components to simulate the debonding process. A finite element model of the steel/GFRP/CFRP hybrid structure with a typical cohesive interface was established and verified against the experimental data. The results showed that due to the use of various materials, the dominant failure modes in the hybrid structure under bending loading were a brittle fracture of the CFRP composite and debonding between the steel and the GFRP composite. However, the load-bearing capacity of the hybrid structure was five times greater than that of a non-reinforced steel sheet. In addition, its mass was only 28% greater than the non-reinforced steel sheet. The obtained results provided valuable conclusions and useful data to continue further research on the mechanical behavior of steel/GFRP/CFRP hybrid structures.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3