Damage Assessment of Glass-Fibre-Reinforced Plastic Structures under Quasi-Static Indentation with Acoustic Emission

Author:

Osa-uwagboe Norman12ORCID,Udu Amadi Gabriel23,Silberschmidt Vadim V.1ORCID,Baxevanakis Konstantinos P.1ORCID,Demirci Emrah1

Affiliation:

1. Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK

2. Air Force Research and Development Centre, Nigerian Air Force Base, Kaduna 800282, Nigeria

3. School of Engineering, University of Leicester, Leicester LE1 7RH, UK

Abstract

The use of fibre-reinforced plastics (FRPs) in various industrial applications continues to increase thanks to their good strength-to-weight ratio and impact resistance, as well as the high strength that provides engineers with advanced options for the design of modern structures subjected to a variety of out-of-plane impacts. An assessment of the damage morphology under such conditions using non-destructive techniques could provide useful data for material design and optimisation. This study investigated the damage mechanism and energy-absorption characteristics of E-glass laminates and sandwich structures with GFRP face sheets with PVC cores under quasi-static indentation with conical, square, and hemispherical indenters. An acoustic emission (AE) technique, coupled with a k-means++ pattern-recognition algorithm, was employed to identify the dominant microscopic and macroscopic damage mechanisms. Additionally, a post-mortem damage assessment was performed with X-ray micro computed tomography and scanning electron microscopy to validate the identified clusters. It was found that the specific energy absorption after impact with the square and hemispherical indenters of the GFRP sandwich and the plain laminate differed significantly, by 19.29% and 43.33%, respectively, while a minimal difference of 3.5% was recorded for the conical indenter. Additionally, the results obtained with the clustering technique applied to the acoustic emission signals detected the main damaged modes, such as matrix cracking, fibre/matrix debonding, delamination, the debonding of face sheets/core, and core failure. The results therefore could provide a methodology for the optimisation and prediction of damage for the health monitoring of composites.

Funder

Nigerian Air Force

Royal Society

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3