Affiliation:
1. Materials Center Leoben Forschung GmbH (MCL), Roseggerstraße 12, 8700 Leoben, Austria
2. Institute of Fundamentals and Theory of Electrical Engineering, Technical University of Graz, Inffeldgasse 18/I, 8010 Graz, Austria
Abstract
Physics-Informed neural networks (PINNs) have demonstrated remarkable performance in solving partial differential equations (PDEs) by incorporating the governing PDEs into the network’s loss function during optimization. PINNs have been successfully applied to diverse inverse and forward problems. This study investigates the feasibility of using PINNs for material data identification in an induction hardening test rig. By utilizing temperature sensor data and imposing the heat equation with initial and boundary conditions, thermo-physical material properties, such as specific heat, thermal conductivity, and the heat convection coefficient, were estimated. To validate the effectiveness of the PINNs in material data estimation, benchmark data generated by a finite element model (FEM) of an air-cooled cylindrical sample were used. The accurate identification of the material data using only a limited number of virtual temperature sensor data points was demonstrated. The influence of the sensor positions and measurement noise on the uncertainty of the estimated parameters was examined. The study confirms the robustness and accuracy of this approach in the presence of measurement noise, albeit with lower efficiency, thereby requiring more time to converge. Lastly, the applicability of the presented approach to real measurement data obtained from an air-cooled cylindrical sample heated in an induction heating test rig was discussed. This research contributes to the accurate offline estimation of material data and has implications for optimizing induction heat treatments.
Funder
Austrian Research Funding Association
Subject
General Materials Science
Reference46 articles.
1. Multiple transient point heat sources identification in heat diffusion: Application to experimental 2D problems;Int. J. Heat Mass Transf.,2002
2. The inverse estimation of the thermal behavior and the viscosity of fluid between two horizontal concentric cylinders with rotating inner cylinder;Hsu;Appl. Therm. Eng.,2008
3. Genetic Algorithm in Solution of Inverse Heat Conduction Problems;Woodbury;Numer. Heat Transf. Part B Fundam.,1995
4. ImageNet Classification with Deep Convolutional Neural Networks;Krizhevsky;Commun. ACM,2017
5. Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献