Study of the Friction Behavior of Embedded Fibers in YG8 Surface Grooves

Author:

Huang Zhiping1,Zhang Haohan1ORCID,Ni Jing1ORCID,Yang Lingqi1,Feng Kai1ORCID

Affiliation:

1. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

YG8 is a common cemented carbide material with excellent mechanical properties and mechanical properties, so it is widely used in the actual industry. However, due to the active chemical properties and strong affinity of tungsten alloy steel, it is easy to produce bonding and peeling in application, resulting in an unstable process and short service life. In order to control and reduce the surface wear of YG8 cemented carbide, groove-textured surface (GS) and flocking surface (FS) were prepared on smooth surface (SS). The friction characteristics of the samples were studied under different applied load conditions. The results show that the average friction coefficient of SS, GS and FS is inversely proportional to the load in dry/oil environment. Compared with SS, FS exhibits the lowest friction coefficient, which is reduced by 30.78% (dry friction) and 13.13% (oil lubrication). FS effectively improves the tooth jump phenomenon of the sample and the amplitude of the friction coefficient, friction force and load, and has the best anti-friction characteristics. At the same time, the FS with the fastest contact angle drop at any time also showed excellent wetting ability, and the wear rate decreased by an order of magnitude. The implantation of fibers in the groove inhibits the spalling and furrow of wear track, which is attributed to the effect of fibers on damage repair. In the friction process, FS increases the content of the O element and induces the formation of oxides. The friction mechanism is mainly chemical wear. The excellent tribological properties of FS have a good guiding significance and theoretical support for improving the tribological properties of high hardness material surfaces.

Funder

Science Foundation for Distinguished Young Scholars of Zhejiang, China

Key Research and Development Program of Zhejiang Province, China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3