Crystallization of Cristobalite in Sodium Borosilicate Glass in the Presence of Cr2O3

Author:

Konon Marina1ORCID,Polyakova Irina G.1ORCID,Mazur Anton S.2ORCID,Saratovskii Artem S.13,Danilovich Dmitry P.3,Alikin Mikhail3

Affiliation:

1. Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 St. Petersburg, Russia

2. Magnetic Resonance Research Centre, Saint Petersburg State University, 199034 St. Petersburg, Russia

3. St. Petersburg State Technological Institute, Technical University, 190013 St. Petersburg, Russia

Abstract

Glass containing chromium is a promising material for use in various modern fields of application (laser technology, optoelectronic devices, and luminescent resources). Chromium oxides are well-known nucleating agents that can cause crystallization. One of the most commonly observed crystalline phases in silicate glasses is cristobalite, which lowers their mechanical strength, leading to the destruction of the material. The objective of this investigation was to study in detail the crystallization of cristobalite in sodium borosilicate glass in the presence of 2 mol% Cr2O3, depending on the thermal history of the glass. The glass was studied using XRD, SEM, EPR, FTIR-spectroscopy, XPS, and solid-state NMR. Eskolaite, α-Cr2O3, which had crystallized in this glass, stimulated the bulk crystallization of cristobalite at 550 °C after isothermally treating it for 72 h, due to the phase-separated structure of the glass with its interpenetrating phase morphology. Polytypism, resulting in the incorporation of alkalis into the cristobalite structure, was observed. Cr2O3 causes the catalytic crystallization of cristobalite at an extremely low temperature, which is at lower concentrations and temperatures than in glass containing Fe2O3 with a similar composition. The crystal growth rate and the incubation time for the crystallization of cristobalite were roughly estimated.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3