Enhancement of the Acid Resistance of Silty Clay Using Nano-Magnesium Oxide

Author:

Sadiq Areej1,Fattah Mohammed Y.1,Aswad Mohammed F.1

Affiliation:

1. Civil Engineering Department, University of Technology, Baghdad 10066, Iraq

Abstract

Hydrochloric acid is prevalent in numerous industries; leakage of this acid may cause persistent problems in the soil. The study aims to prevent any adverse impact of acid on the strength characteristics of silty clay soil by modifying the soil’s acid resistance. In this study, unconfined compression tests are performed to investigate the strength of contaminated silty clay soil with concentrations of 4%, 8%, and 12% of HCl solution and the strength of treated soil with 0.4%, 0.5%, 0.6%, and 0.8% of nano-magnesium oxide. In addition, the strength of the soil enhanced with nano-MgO contaminated with different concentrations of hydrochloric acid was investigated to assess the effect of nano-MgO on modifying the acid resistance of clay soil. Moreover, the FE-SEM test was performed to analyze the microstructure of the soil under different circumstances. Based on the results, the strength of clay soil decreased due to contamination with the hydrochloric acid solutions; the reduction in strength was more noticeable when the acid solution became more acidic. Adding 0.6% of nano-magnesium oxide enhances the strength by about 114%. Findings show that adding 0.6% nano-MgO to the soil before exposing it to hydrochloric acid can enhance its acid resistance; the strength of the treated soil with nano-MgO was better at resisting the acid than the untreated soil.

Publisher

MDPI AG

Subject

General Materials Science

Reference47 articles.

1. Lukas, R.G., and Gnaedinger, R.J. (1972). Performance of Earth and Earth-Supported Structures, ASCE.

2. Heaving of soil due to acid contamination;Sridharan;Proceedings of the International Conference on Soil Mechanics Foundation Engineering,1981

3. Joshi, R.C., Pan, X., and Lohtia, R.P. (1994, January 5-10). Volume change in calcareous soils due to phosphoric acid contamination. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India.

4. Protecting the bed soils of foundations from damaging wetting by acids;Isaev;Soil Mech. Found. Eng.,1995

5. Building deformations caused by the leakage of chemical reagents;Shekhtman;Soil Mech. Found. Eng.,1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3