The Strength and Fracture Characteristics of One-Part Strain-Hardening Green Alkali-Activated Engineered Composites

Author:

Hossain Khandaker M. Anwar1,Sood Dhruv1

Affiliation:

1. Department of Civil Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

Abstract

Alkali-activated engineered composites (AAECs) are cement-free composites developed using alkali activation technology, which exhibit strain hardening and multiple micro-cracking like conventional engineered cementitious composites (ECCs). Such AAECs are developed in this study by incorporating 2% v/v polyvinyl alcohol (PVA) fibers into alkali-activated mortars (AAMs) produced using binary/ternary combinations of fly ash class C (FA-C), fly ash class F (FA-F), and ground-granulated blast furnace slag (GGBFS) with powder-form alkaline reagents and silica sand through a one-part mixing method under ambient curing conditions. The mechanical and microstructural characteristics of eight AAECs are investigated to characterize their strain-hardening performance based on existing (stress and energy indices) and newly developed tensile/flexural ductility indices. The binary (FA-C + GGBFS) AAECs obtained higher compressive strengths (between 48 MPa and 52 MPa) and ultrasonic pulse velocities (between 3358 m/s and 3947 m/s) than their ternary (FA-C + FA-F + GGBFS) counterparts. The ternary AAECs obtained a higher fracture energy than their binary counterparts. The AAECs incorporating reagent 2 (Ca(OH)2: Na2SO4 = 2.5:1) obtained a greater fracture energy and compressive strengths than their counterparts with reagent 1 (Ca(OH)2: Na2SiO3.5H2O = 1:2.5), due to additional C-S-H gel formation, which increased their energy absorption for crack propagation through superior multiple-cracking behavior. A lower fracture and crack-tip toughness facilitated the development of enhanced flexural strength characteristics with higher flexural strengths (ranging from 5.3 MPa to 11.3 MPa) and a higher energy ductility of the binary AAMs compared to their ternary counterparts. The tensile stress relaxation process was relatively gradual in the binary AAECs, owing to the formation of a more uniform combination of reaction products (C-S-H/C-A-S-H) rather than a blend of amorphous (N-C-A-S-H/N-A-S-H) and crystalline (C-A-S-H/C-S-H) binding phases in the case of the ternary AAECs. All the AAECs demonstrated tensile strain-hardening characteristics at 28 days, with significant improvements from 28% to 100% in the maximum bridging stresses for mixes incorporating 40% to 45% GGBFS at 365 days. This study confirmed the viability of producing green cement-free strain-hardening alkali-activated composites with powder-form reagents, with satisfactory mechanical characteristics under ambient conditions.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3