Simulative Investigation of Thermal Capacity Analysis Methods for Metallic Latent Thermal Energy Storage Systems

Author:

Stahl VeronikaORCID,Kraft WernerORCID,Vetter Peter,Feder Florian

Abstract

Latent heat storage systems are a promising technology for storing and providing thermal energy with low volume, mass and cost requirements, especially when operated at high temperatures. Metallic phase change materials are particularly advantageous for high thermal input and output, which is especially important for mobile applications. When designing a storage system, it is essential to have precise knowledge about the potential storage capacity. However, the system’s storage capacity is typically calculated from material properties determined at lab scale, although systemic boundary conditions can have a considerable influence. Systemic influences can result from thermal and reactive interfaces or from the storage design. In order to consider these influences, we propose three calorimetric procedures to thermally analyse high-temperature metallic latent energy storage systems at an application scale. We examined the procedures in a transient simulation environment, monitoring the storage capacity of the system. The procedure, based on adiabatic conditions, shows the least deviation from the simulation input parameters, but is limited to the heating process of the storage. Discharging the storage can be represented by isoperibolic conditions with controlled heat exchange. The precision of the procedures depends on the evaluation routine, the calibration routine, the heat extraction rate and the thermal inertia of the test bench.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3