An Optimization Based Power Usage Scheduling Strategy Using Photovoltaic-Battery System for Demand-Side Management in Smart Grid

Author:

Ali SajjadORCID,Khan ImranORCID,Jan SadaqatORCID,Hafeez GhulamORCID

Abstract

Due to rapid population growth, technology, and economic development, electricity demand is rising, causing a gap between energy production and demand. With the emergence of the smart grid, residents can schedule their energy usage in response to the Demand Response (DR) program offered by a utility company to cope with the gap between demand and supply. This work first proposes a novel optimization-based energy management framework that adapts consumer power usage patterns using real-time pricing signals and generation from utility and photovoltaic-battery systems to minimize electricity cost, to reduce carbon emission, and to mitigate peak power consumption subjected to alleviating rebound peak generation. Secondly, a Hybrid Genetic Ant Colony Optimization (HGACO) algorithm is proposed to solve the complete scheduling model for three scenarios: without photovoltaic-battery systems, with photovoltaic systems, and with photovoltaic-battery systems. Thirdly, rebound peak generation is restricted by using Multiple Knapsack Problem (MKP) in the proposed algorithm. The presented model reduces the cost of using electricity, alleviates the peak load and peak-valley, mitigates carbon emission, and avoids rebound peaks without posing high discomfort to the consumers. To evaluate the applicability of the proposed framework comparatively with existing frameworks, simulations are conducted. The results show that the proposed HGACO algorithm reduced electricity cost, carbon emission, and peak load by 49.51%, 48.01%, and 25.72% in scenario I; by 55.85%, 54.22%, and 21.69% in scenario II, and by 59.06%, 57.42%, and 17.40% in scenario III, respectively, compared to without scheduling. Thus, the proposed HGACO algorithm-based energy management framework outperforms existing frameworks based on Ant Colony Optimization (ACO) algorithm, Particle Swarm Optimization (PSO) algorithm, Genetic Algorithm (GA), Hybrid Genetic Particle swarm Optimization (HGPO) algorithm.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3