Consideration of the Insulation Design Method on a ±200 kV Converter Valve Unit in an HVDC Converter Hall

Author:

Bang SeungminORCID,Kim Ho-Seung,Koo Jae-Hong,Lee Bang-WookORCID

Abstract

A converter valve unit, which converts Alternating Current (AC) to Directing Current (DC) and DC to AC, is one of the key elements of high voltage direct current (HVDC) transmission. The insulation design of a converter valve unit should be considered for air clearance according to the DC superimposed overvoltage and the insulator that maintains the insulation performance and the corona shield to suppress DC corona discharge. There is no prescribed standard for the insulation design of a converter valve unit. Moreover, insulation performance under an applied DC voltage has not yet been thoroughly investigated. Therefore, it is necessary to study the insulation design method of the converter valve unit. In this paper, consideration of the insulation design method on a ±200 kV converter valve unit in an HVDC converter hall is performed. The finite element method (FEM) is used to simulate the 3D model. Additionally, the safety factor (SF) is applied in accordance with the dielectric test in IEC 62271-1. As a result, an insulation design process on the converter valve unit is proposed and the insulation design is carried through the design factors. It is confirmed that design factors on the air clearance, insulator and corona shield have a significant effect on a highly reliable insulation design.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference21 articles.

1. A preliminary exploration for design of ±800 kV UHVDC project with transmission capacity of 6400 MW;Shu;Power Syst. Technol.,2006

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3