Harmonic Mitigation Using Passive Harmonic Filters: Case Study in a Steel Mill Power System

Author:

Park Byungju,Lee JaehyeongORCID,Yoo Hangkyu,Jang GilsooORCID

Abstract

In this study, we mitigated the harmonic voltage in a power system that contained the roughing mill (RM) and finishing mill (FM) motor drives. AC/DC converter type RM drive is a non-linear, large-capacity varying load that adversely affects power quality, e.g., a flicker, voltage distortion, etc. The voltage drop can be compensated within a certain limit by using the proper capacity of a power capacitor bank. In addition, the voltage distortion can be controlled as per the guidelines of IEEE Std. 519 using the passive harmonic filter corresponding to the characteristic harmonics of the motor drive load. The passive harmonic filter can provide an economical solution by mitigating the harmonic distortion with a proper reactive power supply. However, at the planning level, attention should be paid to avoid system overvoltage that is caused by the leading power under light load conditions and also the problem of parallel resonance between the harmonic filter and the step-down transformer. In addition, when designing the filter reactor, the K-factor and peak voltage must be considered; the filter capacitor also requires a dielectric material that considers the harmonic peak voltage. The purpose of this study was to acquire a better understanding of the filter applications as well as verify the field measurement, analysis, and design of harmonic filters together with its performance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. ABB Drives and Control System for Hot Flat Rolling Mills Improves Yield and Quality;Mjorning,2005

2. Large PWM Inverters for Rolling Mills;Hosoda;Iron Steel Technol.,2008

3. Uninterruptable Power Supplies and Active Filters;Emadi,2005

4. Power System Harmonics;Arrillaga,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3