Abstract
Curved structures are used in buildings and may be integrated with photovoltaic modules. Self-shading occurs on non-flat (curved) surface collectors resulting in a non-uniform distribution of the direct beam and the diffuse incident solar radiation along the curvature the surface. The present study uses analytical expressions for calculating and analyzing the incident solar radiation on a general parabolic concave surface. Concave surfaces facing north, south and east/west are considered, and numerical values for the annual incident irradiations (in kWh) are demonstrated for two locations: 32° N (Tel Aviv, Israel) and 52.2° N (Lindenberg, Germany). The numerical results show that the difference in the incident global irradiation for the different surface orientations is not very wide. At 32° N, the irradiation difference between the south and north-oriented surface is about 15 percent, and between the south and east surface orientation it is about 9.6 percent. For latitude 52.2° N, the global irradiation difference between the south and north-oriented surface is about 16 percent, and between the south and east orientation it is about 3 percent.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献