Abstract
This paper addresses the problem of quality modeling in polymethyl methacrylate (PMMA) production. The key challenge is handling the large amounts of missing quality measurements in each batch due to the time and cost sensitive nature of the measurements. To this end, a missing data subspace algorithm that adapts nonlinear iterative partial least squares (NIPALS) algorithms from both partial least squares (PLS) and principal component analysis (PCA) is utilized to build a data driven dynamic model. The use of NIPALS algorithms allows for the correlation structure of the input–output data to minimize the impact of the large amounts of missing quality measurements. These techniques are utilized in a simulated case study to successfully model the PMMA process in particular, and demonstrate the efficacy of the algorithm to handle the quality prediction problem in general.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献