Permeability and Porosity Changes in Sandstone Reservoir by Geothermal Fluid Reinjection: Insights from a Laboratory Study

Author:

Gan Haonan,Liu Zhiming,Wang Guiling,Liao Yuzhong,Wang Xiao,Zhang Yu,Zhao Jichu,Liu Zhitao

Abstract

Geothermal energy is a clean and environmentally friendly energy source that can be used sustainably; however, attention towards geothermal energy has been intermittent during the last 40 years as a function of the crisis of oil price. However, geothermal reinjection and clogging has been a challenge limiting geothermal development and utilization. In China, widely distributed sandstone geothermal reservoirs have reduced production due to technical constraints such as excessive reinjection pressure and blockage. In this paper, we took the Binzhou sandstone geothermal field in North China as an example and conducted displacement experiments under different temperature and flow rate conditions by collecting in situ geothermal fluid and core rock to obtain changes in sandstone permeability. By comparing the variation in geochemical and mineral composition of geothermal fluids and cores before and after the experiments, combined with a water–rock interaction simulation, we investigated the reasons for the changes in permeability and porosity. The results show that high temperature and low flow rate have relatively minimal displacement pressure, and a flow rate of 1.0 mL/min at 45 °C shows a minimal effect on permeability, while 1.0 mL/min at 55 °C and 0.5 mL/min at 45 °C show a minimal effect on porosity. Flow rate is the main factor controlling permeability, while temperature demonstrated a relatively minor effect. The shift in permeability and porosity is mainly caused by the precipitation of quartz and the conversion of albite to montmorillonite. The injection of fluids at 55 °C may have dissolved additional minerals with a minimal change in porosity. However, the permeability reduction at 55 °C is greater than that at 45 °C, indicating that the blockage, which led to the permeability reduction, contains multiple causes, such as chemical and physical blockages. From the laboratory studies, we recommended that reinjected geothermal water be cooled or kept below the reservoir temperature before reinjection and at moderate flow conditions.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3