Combination of a Highly Efficient Biological System and Visible-Light Photocatalysis Pretreatment System for the Removal of Phthalate Esters from Wastewater

Author:

Chen Chih-YuORCID,Wang Guey-Horng,Chang Yu-Jen,Chen Yi-Hui,Cheng Chiu-Yu,Chung Ying-ChienORCID

Abstract

To save energy and increase treatment efficiency, a visible-light photocatalysis system was coupled with a biological treatment system for the continuous removal of phthalate esters (PAEs) from synthetic wastewater. Di-(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and dimethyl phthalate (DMP) were treated using an iodine-doped TiO2 photocatalyst, and the reactions followed first-order kinetics (similar to ultraviolet TiO2 photocatalysis) to produce phthalic acid as an intermediate product. The effects of various operating factors, such as PAE concentrations, pH, light intensity, retention time (RT), and the coexistence of PAEs, on individual PAE removal were investigated. DEHP-degrading bacteria were isolated from DEHP-contaminated soil, purified through serial dilution, and then identified through DNA sequencing. The results indicated that the optimal operating conditions for PAE removal with a visible-light photoreactor were a pH of 5, a temperature of 30 °C, a light intensity of 300 W, and an RT of 5.5 min. DEHP, which contains long and branched chains, was more difficult to degrade than DMP, which contains short alkyl side chains. Pseudomonas sp. was the most dominant bacteria in the DEHP-contaminated soil and was inoculated in a packed bed reactor (PBR) for complete PAE degradation. The effluent containing PAEs was pretreated using the visible-light photoreactor under a short RT. This treatment resulted in the effluent becoming biodegradable, and PAEs could be completely removed from the treated effluent by using the PBR. The coupled photobiological system achieved removal efficiencies of 99.6%, 99.9%, and 100% for DEHP, DBP, and DMP, respectively, during the continuous treatment. The results of this study indicate that the developed coupled system is an effective, energy-saving, and cost-efficient tool for treating wastewater containing PAEs.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3