Addressing the Effects of Climate Change on Modeling Future Hydroelectric Energy Production in Chile

Author:

Gil EstebanORCID,Morales YerelORCID,Ochoa Tomás

Abstract

Despite the growing scientific evidence, the electricity market models used in Chile do not consider the effects of climate change on hydroelectric energy production. Based on a statistical analysis of the historical hydro-energy inflow dataset and a revision of the scientific literature, we suggest a set of technical and statistical criteria to determine an alternative representation of the hydro-energy uncertainty in the Chilean electricity market. Based on these criteria, we then propose an alternative range of historical hydrological data, which is built by shedding the first 35 years of the historical dataset (out of 59 years) and using only a reduced subset of 24 years. Additionally, we propose to capture the potential impacts of even more prolonged droughts on the Chilean electricity system by repeating the last nine years of data at the end of the 24 year-long series. The resulting extended subset of 33 hydro-years is approximately 10% drier on average than the original dataset of 59 years. The proposed range of hydrological data captures some of the anticipated effects of climate change on Chilean hydro-uncertainty reported in the literature and also preserves most of the intra-annual and spatial diversity of the original data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference53 articles.

1. Changes in climate extremes and their impacts on the natural physical environment;Seneviratne,2012

2. Changes in precipitation with climate change

3. How Often Will It Rain?

4. Climate Change and Drought: a Precipitation and Evaporation Perspective

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3