Abstract
Comparative analysis of the steady-state and transient properties of a bubbling fluidized-bed catalytic reactor obtained according to different mathematical models of the emulsion zone was performed to verify the commonly used assumption regarding the pseudohomogeneous nature of this zone. Four different mathematical models of the fluidized-bed reactor dynamics were formulated, based on different thermal and diffusional conditions at the gas-solid interface and within the catalyst pellet, namely the model based on the assumption of pseudohomogeneous character for the emulsion zone, and a group of two-scale models accounting for the heterogeneous character of this zone. It was demonstrated that, while the pseudohomogeneous model of the emulsion zone predicts almost identical behavior of the reactor at steady-state as the proposed heterogeneous models, it may fail in the prediction of the reactor start-up behavior, especially when dealing with highly exothermic processes run at relatively high fluidization velocity.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献