In-Depth In Silico Search for Cuttlefish (Sepia officinalis) Antimicrobial Peptides Following Bacterial Challenge of Haemocytes

Author:

Benoist LouisORCID,Houyvet Baptiste,Henry Joël,Corre ErwanORCID,Zanuttini Bruno,Zatylny-Gaudin CélineORCID

Abstract

Cuttlefish (Sepia officinalis) haemocytes are potential sources of antimicrobial peptides (AMPs). To study the immune response to Vibrio splendidus and identify new AMPs, an original approach was developed based on a differential transcriptomic study and an in-depth in silico analysis using multiple tools. Two de novo transcriptomes were retrieved from cuttlefish haemocytes following challenge by V. splendidus or not. A first analysis of the annotated transcripts revealed the presence of Toll/NF-κB pathway members, including newly identified factors such as So-TLR-h, So-IKK-h and So-Rel/NF-κB-h. Out of the eight Toll/NF-κB pathway members, seven were found up-regulated following V. splendidus challenge. Besides, immune factors involved in the immune response were also identified and up-regulated. However, no AMP was identified based on annotation or conserved pattern searches. We therefore performed an in-depth in silico analysis of unannotated transcripts based on differential expression and sequence characteristics, using several tools available like PepTraq, a homemade software program. Finally, five AMP candidates were synthesized. Among them, NF19, AV19 and GK28 displayed antibacterial activity against Gram-negative bacteria. Each peptide had a different spectrum of activity, notably against Vibrio species. GK28—the most active peptide—was not haemolytic, whereas NF19 and AV19 were haemolytic at concentrations between 50 and 100 µM, 5 to 10 times higher than their minimum inhibitory concentration.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3