Degeneration-Aware Localization with Arbitrary Global-Local Sensor Fusion

Author:

Ding XiaqingORCID,Han Fuzhang,Yang Tong,Wang Yue,Xiong Rong

Abstract

Global localization is a fundamental ability for mobile robots. Considering the limitation of single type of sensor, fusing measurements from multiple sensors with complementary properties is a valuable task for study. In this paper, we propose a decoupled optimization-based framework for global–local sensor fusion, which fuses the intermittent 3D global positions and high-frequent 6D odometry poses to infer the 6D global localization results in real-time. The fusion process is formulated as estimating the relative transformation between global and local reference coordinates, translational extrinsic calibration, and the scale of the local pose estimator. We validate the full observability of the system under general movements, and further analyze the degenerated movement patterns where some related system state would be unobservable. A degeneration-aware sensor fusion method is designed which detects the degenerated directions before optimization, and adds constraints specifically along these directions to relieve the effect of the noise. The proposed degeneration-aware global–local sensor fusion method is validated in both simulation and real-world datasets with different sensor configurations, and shows its effectiveness in terms of accuracy and robustness compared with other decoupled sensor fusion methods for global localization.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MCLIVO: A low-drift LiDAR-inertial-visual odometry with multi-constrained optimization for planetary mapping;Measurement;2025-01

2. RELEAD: Resilient Localization with Enhanced LiDAR Odometry in Adverse Environments;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Advancing Virtual Reality Interaction: A Ring-Shaped Controller and Pose Tracking;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design;IEEE Transactions on Robotics;2023-08

5. DAMS-LIO: A Degeneration-Aware and Modular Sensor-Fusion LiDAR-inertial Odometry;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3